The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis
نویسندگان
چکیده
The genome of the human hepatitis delta virus (HDV) harbors a self-cleaving catalytic RNA motif, the genomic HDV ribozyme, whose crystal structure shows the dangling nucleotides 5' of the cleavage site projecting away from the catalytic core. This 5'-sequence contains a clinically conserved U-1 that we find to be essential for fast cleavage, as the order of activity follows U-1 > C-1 > A-1 > G-1, with a >25-fold activity loss from U-1 to G-1. Terbium(III) footprinting detects conformations for the P1.1 stem, the cleavage site wobble pair and the A-minor motif of the catalytic trefoil turn that depend on the identity of the N-1 base. The most tightly folded catalytic core, resembling that of the reaction product, is found in the U-1 wild-type precursor. Molecular dynamics simulations demonstrate that a U-1 forms the most robust kink around the scissile phosphate, exposing it to the catalytic C75 in a previously unnoticed U-turn motif found also, for example, in the hammerhead ribozyme and tRNAs. Strikingly, we find that the common structural U-turn motif serves distinct functions in the HDV and hammerhead ribozymes.
منابع مشابه
Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis.
The hepatitis delta virus (HDV) is a human pathogen and satellite RNA of the hepatitis B virus. It utilizes a self-cleaving catalytic RNA motif to process multimeric intermediates in the double-rolling circle replication of its genome. Previous kinetic analyses have suggested that a particular cytosine residue (C(75)) with a pK(a) close to neutrality acts as a general acid or base in cleavage c...
متن کاملTrans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5' substrate sequence.
The hepatitis delta virus (HDV), an infectious human pathogen affecting millions of people worldwide, leads to intensified disease symptoms, including progression to liver cirrhosis upon coinfection with its helper virus, HBV. Both the circular RNA genome of HDV and its complementary antigenome contain a common cis-cleaving catalytic RNA motif, the HDV ribozyme, which plays a crucial role in vi...
متن کاملCatalytic core structure of the trans-acting HDV ribozyme is subtly influenced by sequence variation outside the core.
The human pathogenic hepatitis delta virus (HDV) employs a unique self-cleaving catalytic RNA motif, the HDV ribozyme, during double-rolling circle replication. Fluorescence spectroscopy, circular dichroism, terbium(III) footprinting, and X-ray crystallography of precursor and product forms have revealed that a conformational change accompanies catalysis. In addition, fluorescence resonance ene...
متن کاملTerbium-mediated footprinting probes a catalytic conformational switch in the antigenomic hepatitis delta virus ribozyme.
The two forms of the hepatitis delta virus ribozyme are derived from the genomic and antigenomic RNA strands of the human hepatitis delta virus (HDV), where they serve a crucial role in pathogen replication by catalyzing site-specific self-cleavage reactions. The HDV ribozyme requires divalent metal ions for formation of its tertiary structure, consisting of a tight double-nested pseudoknot, an...
متن کاملGeneral base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility.
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that init...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007